Journal of Organometallic Chemistry, 92 (1975) 181–184 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

CYCLOPENTADIENYLS OF THE GROUP VB ELEMENTS. DIMETHYL-ARSENIC-0-CYCLOPENTADIENYL, Me₂AsCp

PETER KROMMES and JÖRG LORBERTH

Fachbereich Chemie der Philipps Universitöt Marburg, D 3550 Marburg/Lahn, Lahnberge (B.R.D.)

(Received January 9th, 1975)

Summary

The reaction of Me₂AsNMe₂ with monomeric C_sH_6 at low temperature in the presence of Me₃SnCl gives the thermally labile Me₂AsCp in 50% yield. The IR spectrum confirms that the product contains a σ -bonded monohapto- C_5H_5 ligand; 'H NMR spectrum shows a marked temperature dependence. The mass spectrum is reported. Unsuccessful attempts were made to prepare MeAsCp₂ and MeSbCp₂ in a similar reaction from MeAs(NMe₂)₂ or MeSb(NMe₂)₂, respectively.

Introduction

Recently we described the preparation and spectroscopic investigation of the hitherto unknown, thermally unstable cyclopentadienyls Me_2SbCp , Me_2BiCp and polymeric Me_2InCp [1]. These compounds were made by the amine-elimination process:

 $Me_2M - NR_1R_2 + H - Cp \rightarrow Me_2M - Cp + HNR_1R_2$

 $(M = In, Sb, R_1 = R_2 = CH_3; M = Bi, R_1 = CH_3, R_2 = SiMe_3)$

When we extended this reaction to aminoarsines, the preparation of pure Me_2As — σ -Cp was complicated by the long time needed for complete reaction of monomeric cyclopentadiene with Me_2AsNMe_2* . The dimeric cyclopentadiene formed as a byproduct could not be removed by fractional distillation. Carrying out the reaction under reflux, in order to speed up the reaction, led to decomposition of the extremely sensitive product.

Me₂AsCp was also reported [3].

Results and discussion

Pure Me₂AsCp was prepared at low temperature in high yield from the spontaneous reaction which occurred when Me₃SnCl and Me₂AsNMe₂ in a 1/1 molar ratio were added to the reaction mixture. A precipitate of Me₃SnCl · HNMe₂ was formed:

$$Me_2AsNMe_2 + Me_3SnCl + H - Cp \xrightarrow{Et_2O} Me_2AsCp + Me_3SnCl \cdot HNMe_2$$

This method also proved to be very useful when we prepared organoarsenic compounds from aminoarsines with substrates of low hydrogen acidity, e.g. with diazoalkanes to give arsenicdiazoalkanes [2] of the type $(R_2As)_2CN_2$, $R_2AsC(N_2)R'$, $RAs[C(N_2)R']_2$, $RAs(NMe_2)C(N_2)R'$, $(Me_2N)_2AsC(N_2)R'$ or $(Me_2N)As[C(N_2)R']_2$.

TABLE 1

MASS SPECTRUM OF (CH3)2AsC5H5, at 70 eV

I/base	m/e	Ion C <h <*<="" th=""></h>	
15.9	65		
18.9	66	C ₅ H ₆ ⁺	
79.9	79	CSH4CH1*	
4.1	90	CH As ⁺	
7.0	105	(CH ₃) ₂ As ⁺	
27.6	140	AsCsHs+	
100.0	155	CH3AsC3H3+	
96.4	170	(CH ₃) ₂ A ₅ C ₅ H ₅ +	

 $Me_2AsC_5H_5$ was identified by its elemental analysis (see Experimental), ¹H NMR, mass and IR spectra; data are listed below or in Tables 1 and 2. The mass spectrum of $Me_2AsC_5H_5$ is shown in Fig. 1.

Fig. 1. Mass spectral peaks of Me2AsC5H5 (moL wt. 170) at 70 eV.

TABLE 2

Absorption	Vibrational mode	Absorption	Vibrational mode
3120 w(sh) 3085 m 3062 m) v(C-H), (Cp)	1020 vs 1010 vs 998 vs	δ(C—H). (nng)
3000 w(sh) 2975 s	} v _{as} (C-H), (Me)	940 vs 912 m 890 m	δ ring + δ(C—H) ρ(Me)
2900 vs 2805 w·m 1818 m 1660 w	$\begin{cases} \nu_{s}(C-H), (Me) \\ 2 \times 1415 = 2830 \\ 2 \times 912 = 1824 \\ 2 \times 840 = 1680 \end{cases}$	850 840 m(br)	ρ(Ме) δ гля <u>в</u>
1625 m 1555 w 1478 vs 1415 s(br) 1375 vs	δ _{as} (Me) δ(C-H) + δ _{as} (Me) δ(C-H)	820 810 vw(br) 755 vs(br) 715 vw 690 vw(sh)	л(С—Н)
1342 m 1292 m 1255 vs	δ(C-H) + δ ring	655 645 's(br)	δ(C—H) δ(Me)
1240 w(sh) 1220 m	δ _s (Me)	580 vs 572 vs	ν ₃₅ (As—C₂) ν ₅ (As—C₂)
1118 w 1090 s	δ(C-H) δ(Me)	378 m(br) 350 vs 322 vw	r(As—Cp)
		250 m	δ _s (CAsC)

IR DATA (cm⁻¹) FOR Me2AsC5H5, CAPILLARY FILM, CsI DISCS

'H NMR spectrum

The ¹H NMR spectrum of Me₂AsCp (10% in toluene- d_8 , external TMS as a standard) shows a marked temperature dependence; from -77° to -1° cyclopentadienyl resonances where observed at δ 5.94 m. 5.80 m and 2.9 s ppm, while δ (As-CH₃) appears at 0.2 ppm. The expected integration pattern, 2/2/1/6, was observed. The ¹H NMR pattern is typical of σ -bonded cyclopentadienyl ligands, warming from -1° to $+30^{\circ}$ caused disappearance of the resonance at δ 2.9 and a broad signal appeared at 5.8-5.9 ppm. This process is completely reversible and shows the wellknown averaging of signals in sigmatropic rearrangements.

We tried to complete the series Me_nMCp_{3-n} by treating bis(dimethylamino)arsines and -stibines with monomeric cyclopentadiene:

 $MeM(NMe_2)_2 \xrightarrow{excess Cp-H. Et_2O} MeMCp_2 + 2 HNMe_2$ (M = As, Sb)

In the case of arsenic compound we obtained a polymer, containing a few percent of nitrogen, which could not be identified. With $MeSb(NMe_2)_2$, amine elimination took place at -80° , a brown precipitate was formed which gradually decomposed on warming to room temperature. In view of these experiments

it seems unlikely that MeAsCp₂ and MeSbCp₂ will be obtained by other methods requiring more vigorous conditions.

Experimental

The spectrometers used in this work have been specified previously [1]. Elemental analysis was performed by A. Bernhardt, Analytical Laboratory, Elbach über Engelskirchen, (B.R.D.). Me₂AsNMe₂, MeAs(NMe₂)₂ [4] and MeSb-(NMe₂)₂ [5] were prepared by standard procedures and purified by fractional distillation; monomeric cyclopentadiene was obtained by crack-distillation of the dimer.

Me_2AsCp

A solution of Me₂AsNMe₂ (3.76 g, 2.5 mmol) in 5 ml of dry Et₂O was cooled to -30° and an excess of monomeric cyclopentadiene was added. Me₃SnCl (5.03 g, 2.5 mmol) dissolved in 20 ml dry Et₂O, was added dropwise and Me₃SnCl · HNMe precipitated immediately. After completion of the reaction HNMe₂ was condensed into the mixture to precipitate all the Me₃SnCl. The Me₃SnCl · HNMe₂ was removed by filtration, and evaporation of volatiles yielded a pale yellow liquid which was purified by fractional distillation. Me₂AsCp(2.12 g, yield 50%), pale yellow liquid, b.p. 39°/4 Torr with a characteristic odour; mol. wt. (mass) 170. (Found: C, 49.23; H, 6.44; As, 43.81. C₇H₁₁As calcd.: C, 49.44; H, 6.47; As, 44.09%.)

MeAsCp₂

A solution of MeAs(NMe₂)₂ (11.05 g, 62 mmol) in 25 ml of Et₂O was treated at -78° with an excess (10 ml) of monomeric cyclopentadiene. HNMe₂ was removed by a stream of dry nitrogen. The yellow precipitate formed was filtered off and washed with dry ether. Drying in vacuo yielded a yellow-tocream-coloured product, which decomposed without melting at 190-200°. The elemental analysis was quite different from that expected for MeAsCp₂. No useful spectroscopic information was obtained from the mass, IR or ¹H NMR spectra, the compound decomposing rapidly during the recording of the spectra.

MeSbCp₂

A solution of MeSb(NMe₂)₂ (5.2 g, 23.2 mmol) in 20 ml dry ether was heated with 10 ml of monomeric cyclopentadiene at -78° . A yellow precipitate was immediately formed, and on warming to -50° , this turned orange. At -30° it decomposed to a black mass, and no MeSbCp₂ could be isolated.

Acknowledgements

Experiments were financed by Fachbereich Chemie, Philipps-Universität Marburg; we thank Deutsche Forschungsgemeinschaft (DFG) for a grant (to P.K.) and VCI, Fonds der Chemischen Industrie, for additional support (to J.L.).

References

- 1 P. Krommes and J. Lorberth, J. Organometal. Chem., 88 (1975) 329.
- 2 P. Krommes and J. Lorberth, J. Organometal. Chem., 93 (1975) 339.
- 3 P. Jutzi and M. Kuhn, Chem. Ber., 107 (1974) 1228.
- 4 K. Moedritzer, Chem. Ber., 92 (1959) 2637.

⁵ O.J. Scherer, P. Hornig and M. Schmidt, J. Organometal. Chem., 6 (1966) 25.